Parameter-Free Binarization and Skeletonization of Fiber Networks from Confocal Image Stacks

نویسندگان

  • Patrick Krauss
  • Claus Metzner
  • Janina Lange
  • Nadine Lang
  • Ben Fabry
چکیده

We present a method to reconstruct a disordered network of thin biopolymers, such as collagen gels, from three-dimensional (3D) image stacks recorded with a confocal microscope. The method is based on a template matching algorithm that simultaneously performs a binarization and skeletonization of the network. The size and intensity pattern of the template is automatically adapted to the input data so that the method is scale invariant and generic. Furthermore, the template matching threshold is iteratively optimized to ensure that the final skeletonized network obeys a universal property of voxelized random line networks, namely, solid-phase voxels have most likely three solid-phase neighbors in a 3 x 3 x 3 neighborhood. This optimization criterion makes our method free of user-defined parameters and the output exceptionally robust against imaging noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstructing fiber networks from confocal image stacks

We present a numerically efficient method to reconstruct a disordered network of thin biopolymers, such as collagen gels, from three-dimensional (3D) image stacks recorded with a confocal microscope. Our method is based on a template matching algorithm that simultaneously performs a binarization and skeletonization of the network. The size and intensity pattern of the template is automatically ...

متن کامل

Fast two-dimensional bubble analysis of biopolymer filamentous networks pore size from confocal microscopy thin data stacks.

The average pore size ξ0 of filamentous networks assembled from biological macromolecules is one of the most important physical parameters affecting their biological functions. Modern optical methods, such as confocal microscopy, can noninvasively image such networks, but extracting a quantitative estimate of ξ0 is a nontrivial task. We present here a fast and simple method based on a two-dimen...

متن کامل

Automated three-dimensional tracing of neurons in confocal and brightfield images.

Automated three-dimensional (3-D) image analysis methods are presented for tracing of dye-injected neurons imaged by fluorescence confocal microscopy and HRP-stained neurons imaged by transmitted-light brightfield microscopy. An improved algorithm for adaptive 3-D skeletonization of noisy images enables the tracing. This algorithm operates by performing connectivity testing over large N x N x N...

متن کامل

Automatic detection, segmentation and characterization of retinal horizontal neurons in large-scale 3D confocal imagery

Automatic analysis of neuronal structure from wide-field-of-view 3D image stacks of retinal neurons is essential for statistically characterizing neuronal abnormalities that may be causally related to neural malfunctions or may be early indicators for a variety of neuropathies. In this paper, we study classification of neuron fields in large-scale 3D confocal image stacks, a challenging neurobi...

متن کامل

New Approach for the Skeletonization of Handwritten Characters in Gray-Level Images

Existing skeletonization methods operate directly on the binary image ignoring the gray-level information. In this paper we propose a new method for the skeletonization of handwritten characters that uses graylevel information and capitalizes on their elongated pattern properties. The method controls the development of the skeleton while iteratively binarizing the gray-level image. Two types of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012